Managing Hybrid Main Memories with a Page-Utility Driven Performance Model
نویسندگان
چکیده
Hybrid memory systems comprised of dynamic random access memory (DRAM) and non-volatile memory (NVM) have been proposed to exploit both the capacity advantage of NVM and the latency and dynamic energy advantages of DRAM. An important problem for such systems is how to place data between DRAM and NVM to improve system performance. In this paper, we devise the first mechanism, called UBM (page Utility Based hybrid Memory management), that systematically estimates the system performance benefit of placing a page in DRAM versus NVM and uses this estimate to guide data placement. UBM’s estimation method consists of two major components. First, it estimates how much an application’s stall time can be reduced if the accessed page is placed in DRAM. To do this, UBM comprehensively considers access frequency, row buffer locality, and memory level parallelism (MLP) to estimate the application’s stall time reduction. Second, UBM estimates how much each application’s stall time reduction contributes to overall system performance. Based on this estimation method, UBM can determine and place the most critical data in DRAM to directly optimize system performance. Experimental results show that UBM improves system performance by 14% on average (and up to 39%) compared to the best of three state-of-the-art mechanisms for a large number of data-intensive workloads from the SPEC CPU2006 and Yahoo Cloud Serving Bench-
منابع مشابه
Exploiting Page Write Pattern for Power Management of Hybrid DRAM/PRAM Memory System
The main memory has become a power bottleneck for computer systems. To reduce the energy dissipation of main memory, the non-volatile phase-change RAM (PRAM) has emerged as one of the promising memories due to its high density and low standby power. But PRAM has its intrinsic disadvantages of long write latency and high write energy. Hence, the hybrid DRAM/PRAM main memory is proposed to provid...
متن کاملModeling and Performance Evaluation of Multi-Processors Organization with Shared Memories
This paper is primarily concerned with theoretical evaluation of the performance of multiprocessors system. A markovian waiting line model has been developed for various different multi-processors configurations, with shared memory. The system is analysed at the request level rather than job level.
متن کاملNWCache: Optimizing Disk Accesses via an Optical Network/Write Cache Hybrid
In this paper we propose a simple extension to the I/O architecture of scalable multiprocessors that optimizes page swap-outs significantly. More specifically, we propose the use of an optical ring network for I/O operations that not only transfers swapped-out pages between the local memories and the disks, but also acts as a system-wide write cache. In order to evaluate our proposal, we use de...
متن کاملDriving/Regeneration and Stability Enhancement of a 4WD Hybrid Vehicles Using Multi-Stage Fuzzy Controller
In front wheels driven vehicles, fuel economy can be obtained by summing torques applied to rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety. In this paper, a model with seven degrees of freedom is considered for the vehicle body. Thereafter, power-train subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controlle...
متن کاملAssociation between prospective, retrospective memories and job performance of nurses in the city of Ahvaz, Iran, in 2016
Background: Nurses continuously carry out several activities and need to develop certain cognitive mechanisms to be able to concentrate on their tasks. These activities and tasks affect and deal with the health and safety of people and their job performance. This study aims to investigate the association between prospective and retrospective memories and job performance of nurses in Imam Hospit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1507.03303 شماره
صفحات -
تاریخ انتشار 2015